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Abstract
We present a method for evaluating plethysms of Schur functions that is
conceptually simpler than existing methods. Moreover the algorithm can
be easily implemented with an algebraic computer language. Plethysms of
sums, differences and products of S-functions are dealt with in exactly the
same manner as plethysms of simple S-functions. Sums and differences of S-
functions are of importance for the description of multi-shell configurations in
the shell model. The number of variables in which theS-functions are expressed
can be specified in advance, significantly simplifying the calculations in typical
applications to many-body problems. The method relies on an algorithm that
we have developed for the product of monomial symmetric functions. We
present a new way of calculating the Kostka numbers (using Gel’fand patterns)
and give, as well, a new formula for the Littlewood–Richardson coefficients.

PACS number: 0220

1. Introduction

In group theoretical models of many-particle systems, of particular importance is the
construction ofN -body states that simultaneously belong to definite irreducible representations
(irreps) of both the model’s relevant group G and the symmetric group SN . For instance,
wavefunctions that describe N fermions must be totally antisymmetric with respect to any
permutation of theN fermions; hence to construct states of well defined permutation symmetry
one considers SN as a subgroup of the chain of groups relevant to the model. Mathematically
this requires the decomposition of tensor power representations ofG into representations that
have a particular symmetry type with respect to particle permutations; this operation on the
group characters is known as the symmetrized power or plethysm.

The groups of interest in many-body physics are the classical compact Lie groups (general
linear, special linear, unitary, special unitary, orthogonal, special orthogonal and unitary

3 Corresponding author.
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symplectic), as well as the non-compact symplectic Lie groups, and of course the symmetric
groups.

Schur functions (S-functions for short) are characters of the unitary irreps of unitary groups
(and the characters of finite-dimensional irreps of general linear groups) [1]. The plethysm of
S-functions was introduced by Littlewood [2], who developed a number of useful techniques
for its calculation [1]. Plethysm of S-functions applies directly to problems involving irreps
of unitary groups. However, it is well known [3] that the characters of the unitary irreps of all
the other aforementioned Lie groups are expressible in terms of S-functions, and vice versa.
To calculate a plethysm for any such groupG, then, one expands the characters ofG in terms
of S-functions, determines the plethysm of the S-functions, and then expresses the resulting
series of S-functions back in terms of the characters of G. This procedure is straightforward
in principle for compact groups, although the calculations may be difficult in practice. For
non-compact groups, where the characters are infinite series of S-functions, the difficulties
are even greater. Methods for evaluating plethysms of, for example, the fundamental irreps
of non-compact symplectic groups have been given in the literature [4–8]. These make use
of the generating functions of S-function series and enable one, in principle, to obtain the full
expansion of such plethysms, though in practice one has to truncate them at a prescribed cutoff.
In any case, the plethysm of S-functions is of fundamental importance for the calculation of
plethysms of irreps for any of the aforementioned groups.

The practical difficulties in calculating plethysms have stimulated a continuing search for
algorithms that are both simple and efficient. Some breakthroughs include a notable paper by
Butler and King [9], in which they obtain recurrence relations for plethysms; the algorithm for
plethysm of Chen et al [10]; and the recently published method of Yang [11] for evaluating
the coefficient of a single S-function in the expansion of a plethysm of two S-functions. Also
computer codes exist to evaluate S-function plethysms; for example ‘SCHUR’4.

If the plethysm of simple S-functions is arduous in practice additional difficulties arise
when one needs to calculate symmetrized tensor powers of a sum, difference or product of
S-functions, which we call here for brevity compound S-functions. Since plethysm is not
distributive on the left, the evaluation of such plethysms has up to now relied upon complicated
manipulations of S-functions as expressed in equations (44)–(46) of section 5. Physical
situations where plethysms of compound S-functions are required include:

(i) Identification of nuclear shell model states that span irreps of appropriate unitary groups
and have a particular permutation symmetry for a system of particles in a multi-shell
configuration.

(ii) Classification of many-particle states, of well defined permutation symmetry, by
representation characters that are not simple S-functions; for example, by characters of
irreps of the orthogonal or unitary symplectic groups.

The objective of this paper is to outline a method for evaluating plethysms of S-functions
that is conceptually simpler than existing methods. The method is simpler because it only
requires a straightforward algorithm for multiplying monomial symmetric functions and no
other complicated rules intervene. Moreover the algorithm can be easily implemented with
an algebraic computer language such as Maple. A major strong point of the method is that
plethysms of compound S-functions are dealt with in exactly the same way as plethysms of
simple S-functions. The number of variables in which the S-functions are expressed can
be specified in advance, significantly simplifying the calculations in typical applications to

4 SCHURTM An interactive program for calculating properties of Lie groups and symmetric functions distributed by
Steven M Christensen and Associates, Inc., PO Box 16175, Chapel Hill, NC 27516, USA. E-mail: steve@smc.vnet.net,
webpage http://smc.vnet/Christensen.html
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many-body problems. In essence, the method described here consists of (i) converting the
S-functions to monomial symmetric functions, (ii) calculating the plethysm of monomial
symmetric function series, where distributivity on the left is valid, and (iii) converting the
result back to S-functions. The feasibility of this method relies on an algorithm (presented in
section 4) for the product of monomial symmetric functions, which to the best of our knowledge
has not previously appeared in the literature.

The structure of the paper is as follows. In section 2 we present the essential facts about
partitions and symmetric functions and establish the notation used. In section 3 we review
the interrelations among monomial symmetric functions, power-sum symmetric functions and
S-functions, and give a novel method for determining the transition matrices for S-functions
in terms of monomial symmetric functions using Gel’fand patterns. In section 4 we review
the outer product of S-functions and its physical interpretation. We also give an algorithm
(developed in detail in appendix B) for the product of two monomial symmetric functions.
This algorithm is used in section 4 to resolve the outer product of two S-functions, incidentally
obtaining a new formula for the Littlewood–Richardson coefficients, and in section 5 to obtain
an algorithm for the resolution of the plethysm of two S-functions. The physical interpretation
of plethysms of S-functions is discussed in section 5. Section 6 contains an example illustrating
the application of the new algorithm to the plethysm of compound S-functions, and concluding
remarks.

2. Partitions and symmetric functions

Polynomials in r independent indeterminates x1, x2, . . . , xr that remain invariant with respect
to arbitrary permutations of the indices of the indeterminates are known as symmetric functions.
Symmetric functions of degree n are labelled by partitions of n.

For further details on symmetric functions and partitions one can consult, for example,
the books by Littlewood [1] or Wybourne [3]. A comprehensive source for information on
symmetric functions and partitions is Macdonald’s book [12]. In this section we shall provide
a brief summary for the reader’s convenience.

A partition λ = (λ1, λ2, . . . , λk) of the positive integer n is a sequence of positive integers
λi (the parts of the partition) for which |λ| = ∑k

i=1 λi = n where |λ| denotes the weight of
the partition λ. The notation λ � n indicates that λ is a partition of n. The partition is said to
be standard provided that λ1 � λ2 � · · · � λk . The number of non-zero parts of a partition is
called the length of the partition, l(λ).

Exponents, called multiplicities, νi , are commonly used to simplify the notation for a
partition. For example, (4422211111) can be written as (422315), where ν1 = 5, ν2 = 3,
ν3 = 0 and ν4 = 2.

Partitions are easily visualized by using Young diagrams. Specifically, the Young diagram
associated with a partition λ = (λ1, λ2, . . . , λk) consists of k rows of boxes and has λi boxes
in its ith row. The main diagonal of a Young diagram consists of the first box in the first row,
the second box in the second row and so on. By reflecting the Young diagram for λ in its main
diagonal one obtains the Young diagram for its conjugate partition λ′. For example, the Young
diagrams associated with the partition (3212) and its conjugate (421) are

(1)

In what follows we will sometimes need to add zeros to the end of a partition in order to have
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a prescribed number of parts. The resulting partition is equivalent to the original one. For
example the partitions (21), (210), (2100) and so on are all equivalent.

In this paper we are only concerned with three types of symmetric functions, the monomial
symmetric functions mλ, the power-sum symmetric functions pj and the S-functions sλ. The
set of all symmetric functions labelled by λ � n forms a vector space for which the sets
{mλ | λ � n}, {pλ | λ � n} and {sλ | λ � n} are bases.

Consider a fixed number r of variables (indeterminates)x1, x2, . . . , xr ; then, theS-function
denoted by either5 sλ or {λ} is defined as

sλ = |xλt+r−ts |
|xr−ts | (2)

where s and t index rows and columns respectively of the r × r determinants. For example,
in terms of three (r = 3) indeterminates, the S-function labelled by λ = (21) (recall that
(21) ≡ (210)) is given by

s(210) =

∣∣∣∣∣∣∣
x2+2

1 x1+1
1 x0+0

1

x2+2
2 x1+1

2 x0+0
2

x2+2
3 x1+1

3 x0+0
3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x2

1 x1
1 x0

1

x2
2 x1

2 x0
2

x2
3 x1

3 x0
3

∣∣∣∣∣∣∣
or

s(21) = x2
1x

1
2x

0
3 + x1

1x
2
2x

0
3 + x0

1x
2
2x

1
3 + x0

1x
1
2x

2
3 + x2

1x
0
2x

1
3 + x1

1x
0
2x

2
3 + 2x1

1x
1
2x

1
3 . (3)

One of the facts that makes S-functions so useful is that these formulae are essentially
independent of the number of variables; the exception is that if there are insufficient variables,
then some S-functions are identically zero. To be precise, an S-function with k parts in
r variables is identically zero if r < k. Equation (2) follows from the Weyl character
formula applied to unitary groups, so the characters of unitary irreps of U(r) are in one-
to-one correspondence with S-functions in r variables. Also note that an S-function sλ is said
to be standard if the partition λ that labels it is a standard partition. However non-standard
S-functions can also be defined. A non-standard S-function is either zero (if λi−1 = λi − 1) or
can be converted to a standard one by using the well known S-function modification rule [3]

s(λ1,...,λi−1,λi ,...,λk) = −s(λ1,...,λi−1,λi−1+1,...,λk) (4)

which is a consequence of the properties of determinants, more precisely the determinant in
the numerator of equation (2).

In terms of the r indeterminates, the monomial symmetric function mλ (m-function for
short) is defined as

mλ =
∑
x
λ1
1 x

λ2
2 · · · xλkk (k � r) (5)

where the label λ stands for the partition λ = (λ1, λ2, . . . , λk), and the sum includes all
distinct terms obtained by all possible permutations of the subscripts i of the indeterminates
xi . The number of terms in the sum (which henceforth we call the dimension dim(mλ) of the
m-function) is given by

dim(mλ) = r!∏
i µi!

(6)

5 Both notations are widely used in the literature.
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where µi , for i � 1, are simply the multiplicities of the parts of λ and µ0 = r − k. Thus,
for example, for r = 3 and λ � 3 we have the three m-functions m(3) = x3

1 + x3
2 + x3

3 ,
m(21) = x2

1x2 + x1x
2
2 + x2

1x3 + x1x
2
3 + x2

2x3 + x2x
2
3 and m(111) = x1x2x3, with dimensions

dim(m(300)) = 3, dim(m(210)) = 6 and dim(m(111)) = 1.
The power-sum symmetric functionpj is the sum of the j th powers of the r indeterminates:

pj =
r∑
i=1

x
j

i = m(j). (7)

For example, for r = 4 and j = 3, p3 = x3
1 + x3

2 + x3
3 + x3

4 . In addition, the p-function pλ,
where λ = (λ1, λ2, . . . , λk), is defined as

pλ = pλ1pλ2 · · ·pλk . (8)

3. Transitions among symmetric functions

In order to implement the plethysm procedure in section 5 we need to calculate elements of the
transition matrices that interrelate the above-mentioned bases for symmetric functions. Note
that in what follows we assume that the related symmetric functions are expressed in the same
variables.

3.1. Expansion of S-functions in terms of p-functions

The remarkable relationship between the unitary and symmetric groups, known as the Schur–
Weyl duality, leads to a direct relationship between a character χλ of the symmetric group and
the corresponding character sλ for a unitary group. For λ � n one has

sλ =
∑
ρ

χλρ

zρ
pρ (9)

where ρ = (ρ1, ρ2, . . .) labels the conjugacy classes of Sn, pρ = ∏
i pρi are p-functions, χλρ

are the components of the character χλ of the irrep λ of Sn and zρ is given [12] by

zρ = ν1!1ν1ν2!2ν2 · · · νn!nνn . (10)

3.2. Expansion of S-functions in terms of m-functions

The S-function sλ is expressed in terms of m-functions as follows:

sλ =
∑
|µ|=|λ|
µ1�λ1

Kλµ mµ (11)

where µ is a standard partition of |λ| with µ1 not exceeding λ1. The coefficients Kλµ, which
are either positive integers or zero, are known as the Kostka numbers [12]. Several methods
are given in the literature for the determination of the Kostka numbers Kλµ. Typically they
are calculated by combinatorial means involving Young diagrams. The simplest is to list
the standard numberings of the relevant Young tableaux with integers in the range 1, . . . , n
such that the numbers (µ1, µ2, . . .) of occurrences of the integers (1, 2, . . . , n) are such that
µi+1 � µi ; e.g., for the U(3) S-function s(21) the list contains the numbered tableaux

(12)



1380 M J Carvalho and S D’Agostino

corresponding to µ = (210), (111) and (111), respectively. This gives

s(21) = m(21) + 2m(111). (13)

In appendix A we explain the physical meaning of Kostka numbers in terms of representation
theory. However, for computational purposes, it is more efficient to identify and enumerate
the partitions µ in (11) by means of Gel’fand patterns.

For a given S-function (in r indeterminates), labelled by λ = (λ1, λ2, . . . , λk), the m-
functions mµ appearing on the rhs of (11) can be identified by means of triangular arrays of
integers (the Gel’fand patterns) [13].

g11 g12 g13 · · · g1r−1 g1r

g21 g22 g23 · · · g2r−1

g31 g32 · · · g3r−2

...

grr

(14)

whose entries are subject to the following conditions:

g1i =
{
λi for i � k
0 for k < i � r

gk−1,i � gki � gk−1,i+1.

(15)

The parts of each partitionµ are given by differences of the sums of the entries in two successive
rows of the array

µi =
r−i+1∑
l=1

gil −
r−i∑
l=1

gi+1,l

µr = grr .
(16)

It is clear that for a partition λ there are many compatible patterns. In fact, there are as many as∑
µ dim(mµ). In other words, each possible Gel’fand pattern gives one term of eachm-function

that comprises sλ; equivalently, the Gel’fand patterns are in one-to-one correspondence with
the semistandard Young tableaux of shape λ. However one does not need to construct all of the
Gel’fand patterns in order to identify the relevant m-functions. It is enough to recognize the
distinct patterns that give rise to leading terms, i.e. those for which µi � µi+1. This selection
can be efficiently implemented by imposing on the entries of these patterns the extra condition

r−i+1∑
l=1

gil −
r−i∑
l=1

gi+1,l �
r−i∑
l=1

gi+1,l −
r−i−1∑
l=1

gi+2,l . (17)

Consider, for example, the S-function s(21) in three indeterminates. The triangular patterns
that satisfy the required conditions are

2 1 0
1 0

0

2 1 0
2 0

1

2 1 0
1 1

1
. (18)

Thus, s(21) = m(21) + 2m(111).

3.3. Expansion of m-functions in terms of S-functions

An m-function mλ is expressed in terms of S-functions as

mλ =
∑
σ�|λ|

K−1
λσ sσ (19)
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where the coefficients K−1
λσ , which can be either positive or negative integers, are the inverse

Kostka numbers. The number of terms in the sum (19) cannot exceed the dimension of mλ
and depends on the number of indeterminates.

It may appear that the coefficientsK−1
λσ can be obtained trivially by inverting the appropriate

Kostka matrix. However that method is rather uneconomical in the context of plethysm
calculations because one typically requires a particular row of the inverse of a Kostka matrix
that does not necessarily need to be constructed (since the S-functions in the final result have
higher degree than the originalS-function factors). A practical, easily programmable procedure
for determining the inverse Kostka numbers requires only two straightforward steps conveyed
by the following formula6:

mλ =
∑
λ̂

sλ̂ =
∑
σ

K−1
λσ sσ (20)

where the first sum runs over all distinct partitions λ̂ generated from λ by permuting its parts
in all possible ways. Clearly, only one of the partitions λ̂ is standard. Application of the
modification rules to the non-standard S-functions leads to sσ and the sought-after inverse
Kostka numbers.

As an example, consider the m-function m(321) in three indeterminates. We have that

m(321) = s(321) + s(312) + s(231) + s(213) + s(123) + s(132). (21)

Since, by the modification rules,

s(312) = s(231) = s(123) = 0

s(213) = −s(222)

s(132) = −s(222)

(22)

then the resulting S-function expansion (in three indeterminates) is

m(321) = s(321) − 2s(222). (23)

4. Products of symmetric functions

4.1. Physical interpretation of S-function products

Each operation involving S-functions corresponds to an operation on unitary representations
of GL(n) or its subgroups [16]. In particular, outer products of S-functions correspond to
tensor products of unitary irreps of U(n) orGL(n)7. To see that outer products of S-functions
have fundamental physical importance for descriptions of many-particle states consider the
following. Suppose that a state of Np protons is specified by sλ and a state of Nn neutrons is
specified by sµ, so that λ � Np and µ � Nn. Then a state of the combined system of Np +Nn

particles is specified by an S-function sσ that occurs in the expansion of the outer product

sλsµ =
∑
σ

�λµσ sσ (24)

where each partition σ is a partition of Np +Nn. Note that all of the S-functions sλ, sµ and sσ
are irreps of the same unitary group U(n).

Another S-function operation that is of importance in physical applications is plethysm or
symmetrized power. Consider single-particle states labelled by sλ corresponding to an irrep of

6 Note that this procedure arises from multiplying anm-function by a Vandermonde determinant and rearranging the
result as discussed in [1,14]. We would like to thank a referee for pointing out that this procedure can be traced back
at least as far as Muir in 1882; see [15, pp 150–1].
7 The results obtained are independent of n, and are therefore particularly powerful.
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U(n); then states of N identical particles with permutation symmetry [ν], ν � N , are labelled
by an S-function sσ occurring in the expansion of the outer plethysm8

sλ ⊗ sν =
∑
σ

 λνσ sσ . (25)

In equation (25), ν labels an irrep of SN and sσ are irreps of U(n). More details about this
operation and the new algorithm to evaluate it are deferred until section 5.

4.2. Product of m-functions

The product ofm-functions is a simple product of polynomials. In order to develop an efficient
algorithm for this product without having to work out all the terms explicitly, let us first define
the addition of two partitions (α1, α2, . . .) and (β1, β2, . . .) as being the partition whose parts are
(α1 +β1, α2 +β2, . . .). It is necessary that the partitions have an equal number of parts; if they do
not, then one increases the number of parts of the shortest one by adding enough zeros at the end.

The product of two simple m-functions is then defined as

mαmβ =
∑
γ

Iγmγ (26)

where the partitions γ result from adding to α all distinct partitions β̂ obtained by permuting
in all possible ways the parts of β. Note that one reorders the parts of the resulting partitions
γ to make them standard. The multiplicity Iγ of a resulting m-function mγ is given by

Iγ = nγ dim(mα)

dim(mγ )
(27)

where nγ is the number of times the same partition γ appears in the process of adding
partitions referred to above. One can determine nγ as follows. Write α in the form
(kµk (k − 1)µk−1 · · · 2µ2 1µ1 0µ0) where the µi are the multiplicities defined as in equation (6).
Then

nγ = PkPk−1 · · ·P1P0 (28)

where Pk is the number of distinct permutations of the first µk parts of the partition β̂ (not
necessarily in standard form), Pk−1 is the number of distinct permutations of the next µk−1

parts of β̂ and so forth, where γ = α + β̂. Clearly, all m-functions on the left or right of
equation (26) are functions of the same r indeterminates. If all the possible partitions γ are to
appear in the expansion (26) (i.e. the expansion is complete) then r should be set equal to the
sum of the lengths of α and β. However, if the product (in equation (26)) is part of a calculation
involving irreps of the unitary group U(n) then one should set r = n, since S-functions with
more than n parts are identically zero in U(n).

As an example consider the product m(32)m(11) and choose r = 4 indeterminates so that
the resulting expansion is complete. The addition of α = (3200) ≡ (32) to the list (1100),
(1010), (1001), (0110), (0101), (0011) (i.e. to the partitions generated from (1100) ≡ (11) by
permuting its parts in all possible but distinct ways) gives

(4300), (4210), (4201), (3301), (3310), (3211). (29)

With the values given in table 1, where use was made of (6), we obtain the final result

m(3200)m(1100) = m(4300) +m(4210) + 2m(3310) +m(3211).

8 Since in this paper we only refer to the outer plethysm we shall drop the adjective ‘outer’ from here on.
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Table 1. Multiplicities of the m-functions in the expansion of the product m(32)m(11) in r = 4
indeterminates.

γ nγ dim(mγ ) Iγ

(4300) 1 60 1
(3310) 2 60 2
(4210) 2 120 1
(3211) 1 60 1

Note that if we had chosen r = 3 instead (as in the context of U(3)), then the calculation
would have involved only partitions in no more than three parts; i.e., α = (320) and β = (110).
In this case, the result obtained is

m(320)m(110) = m(430) +m(421) + 2m(331) (30)

which, as expected, is the same as (30) except for the absence of the partition with four non-zero
parts.

The algorithm for the multiplication of two m-functions (cf equation (26)) can be easily
generalized to the multiplication of series of m-functions. The result is (for more details see
appendix B) ( ∑

i1

ci1mαi1

)( ∑
i2

ci2mαi2

)
· · ·

( ∑
ip

cipmαip

)
=

∑
γ12,...,p

ϒγ12,...,pmγ12,...,p (31)

where the coefficients

ϒγ12,...,p =
∑
j,ip

ϒγ12,...,p−1j ,ip
δγ12,...,p{γ12,...,p−1j ,ip } (32)

can be found recursively. For example

ϒγ12 =
∑
i1,i2

ϒγi1 ,i2 δγ12{γi1 ,i2 } (33)

where δγ12{γi1 ,i2 } = 1 if the partition γ12 appears in the set {γi1,i2} and zero otherwise. According
to equation (27),

ϒγi1 ,i2 = ci1 ci2 nγi1 ,i2
dim(mαi1 )

dim(mγi1 ,i2 )
= ci1ci2Iγi1 ,i2 (34)

ϒγ123 =
∑
j,i3

ϒγ12j ,i3
δγ123{γ12j ,i3 } (35)

with

ϒγ12j ,i3
=

∑
j,i3

ϒγ12ci3nγ12j ,i3

dim(mγ12j ,i3
)

dim(mγ123)
(36)

and so on.

4.3. The Littlewood–Richardson coefficients

The standard method for evaluating the rhs of (24) is the well known Littlewood–Richardson
rule [17], which is a set of directives to be applied to the corresponding Young diagrams.
Although application of these rules is feasible in simple cases, their execution for partitions
of large numbers is rather complex. The resolution, given below, of the outer product of two
S-functions via the product of m-functions is simpler and much more amenable to automatic
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computation. Using the algorithm for the product ofm-functions, one has for the outer product
of two S-functions

sµsν =
( ∑

αi

Kµαimαi

)( ∑
βj

Kνβjmβj

)
(37)

=
∑
γ

ϒγmγ (38)

=
∑
σ

∑
γ

K−1
γ σ ϒγ sσ (39)

where ϒγ = ϒγ12 ; cf (33).
Note that we have now obtained a new formula for the Littlewood–Richardson coefficients,

�µνσ =
∑
γ

K−1
γ σ ϒγ

=
∑
γ

K−1
γ σ

∑
ij

ϒγij δγ {γij }

=
∑
γ

K−1
γ σ

∑
ij

KµαiKνβj nγij
dim(αi)

dim(γij )
δγ {γij }. (40)

Note also that this formula enables one to calculate the coefficient of a single S-function in the
expansion of the outer product without having to construct the whole expansion.

5. Plethysm of S-functions

The plethysm of two S-functions sλ and sµ, of weights |λ| = n and |µ| = k respectively,

sλ ⊗ sµ =
∑
σ�nk

 λµσ sσ (41)

gives a sum of S-functions, all of weight nk, with non-negative integer coefficients  λµσ .
Plethysm is a symmetrized power of S-functions, i.e. the outer product of k copies of sλ can be
decomposed into a sum of sets of terms, where the S-functions in each set have permutation
symmetry (µ):

sλsλ · · · sλ︸ ︷︷ ︸
k copies

=
∑
µ

f µsλ ⊗ sµ (42)

where the sum on the right-hand side extends over all partitions of k, and f µ is equal to the
dimension of the Sk irrep labelled by µ. In more physical terms, the states of a k-particle
system (where each particle is individually described by sλ) of permutation symmetry [µ] are
described by the plethysm sλ ⊗ sµ.

For example the simple (outer) product s1 s1 s1 has expansion

s1s1s1 = s3 + 2s21 + s111. (43)

If one regards s1 as the character of a U(3) irrep spanned by the wavefunctions of a single
particle, then the product s1 s1 s1 is the character of the tensor product of three copies of this
irrep. This reducible representation is spanned by a set of three-particle wavefunctions. It
is a direct sum of three irreps: an irrep with character s3 spanned by wavefunctions that are
fully symmetric with respect to particle exchange; an irrep with character s111 spanned by fully
antisymmetric wavefunctions and two mixed symmetry irreps with character s21.

Note that a given S-function may appear in different symmetrized products, so S-functions
do not characterize the symmetry classes of tensor products. In contrast with the outer product,
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plethysm of S-functions is not commutative or distributive on the left over outer product,
addition and subtraction.

Current algorithms cannot directly handle plethysms of compound S-functions (i.e. linear
combinations or outer products of S-functions). The difficulty is due to the fact that plethysm
of S-functions is not distributive on the left and so use must be made of [3]

(A + B)⊗ sλ =
∑
µ,ν

�µνλ(A⊗ sµ)(B ⊗ sν) (44)

(A− B)⊗ sλ =
∑
µ,ν

(−1)|ν|�µνλ(A⊗ sµ)(B ⊗ sν ′) (45)

(AB)⊗ sλ =
∑
µ,ν

kµνλ(A⊗ sµ)(B ⊗ sν) (46)

where A and B stand for either S-functions, characters of classical groups or any linear
combination of S-functions. In equations (44) and (45) the coefficients �µνλ are taken from
sµsν = ∑

λ �µνλsλ and sν ′ is the S-function labelled by the conjugate partition of ν. In
equation (46) the coefficients kµνλ are taken from the internal (inner) product sµ ◦ sν =∑
λ kµνλsλ, (cf [3]). It is assumed in all three equations that the summations include the

cases sµ = s0 = 1 and sν = sλ, and vice versa.
If use of equations (44)–(46) is already tedious when A and B are simple S-functions, it

becomes even more so when they are compound S-functions. In the following we present a
method that permits the evaluation of the plethysm of a compound S-function without having
to resort to the labour entailed by using equations (44)–(46).

By expanding the S-functions on the left side of the plethysm sign ⊗ in terms of m-
functions and the S-function on the right side in terms of p-functions, the plethysm of a
compound S-function (or of a simple one) is then reduced to the plethysm of a series of m-
functions with p-functions. But since the plethysm of an m-function with a p-function is still
an m-function,

mµ ⊗ pj = mj.µ (47)

where j · µ means that each part of µ is multiplied by j (that is, if µ = (µ1, . . . , µk) then
j ·µ = (jµ1, . . . , jµk)), then evaluation of the plethysm of S-functions (simple or compound)
only involves, just as for the outer product, the multiplication of m-functions.

5.1. An algorithm for the plethysm of S-functions

Here is a detailed description for evaluating the plethysm

sλ ⊗ sν =
∑
σ

 λνσ sσ . (48)

First, the S-function sν is expanded, as usual, in terms of the p-functions pρ = ∏
i pρi

sν =
∑
ρ

χνρ z
−1
ρ pρ (49)

and since plethysm of S-functions is distributive on the right,

sλ ⊗ sν =
∑
ρ

χνρ z
−1
ρ sλ ⊗

∏
i

pρi

=
∑
ρ

χνρ z
−1
ρ

∏
i

sλ ⊗ pρi . (50)

Now, the S-function, sλ, is expanded in terms of m-functions

sλ =
∑
j

Kλαjmαj (51)
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and by making use of the property

mµ ⊗ pj = mj ·µ (52)

one obtains

sλ ⊗ sν =
∑
ρ

χνρ z
−1
ρ

l(ρ)∏
i

( ∑
j

Kλαjmρi ·αj

)
. (53)

It remains to evaluate the product

l(ρ)∏
i

( ∑
j

Kλαjmρi ·αj

)

which can be done using (32) to yield

p=l(ρ)∏
i=1

( ∑
j

Kλαjmρi ·αj

)
=

∑
γ
ρ

12...p

ϒγ ρ12...p
mγ ρ12...p

. (54)

Thus,

sλ ⊗ sν =
∑
ρ

χνρ z
−1
ρ

∑
γ
ρ

12...p

ϒγ ρ12...p
mγ ρ12...p

=
∑
γ

ϒγmγ (55)

with

ϒγ =
∑
ρ

χνρ z
−1
ρ ϒγ ρ12...p

δγ {γ ρ12...p} (56)

where the set {γ } is the union of all sets of partitions {γ ρ12...p} for all classes ρ, and the
delta function δγ {γ ρ12...p} ensures that the coefficient ϒγ has contributions from the individual

coefficients ϒγρ12...p
when a partition γ is common to more than one set {γ ρ12...p}.

Converting the m-functions back to S-functions we finally have

sλ ⊗ sν =
∑
σ

∑
γ

ϒγK
−1
γ σ sσ . (57)

Thus,

 λνσ =
∑
γ

ϒγK
−1
γ σ . (58)

The plethysm of a sum, difference or outer product of S-functions clearly reduces to the
evaluation of an equation formally identical to (53), since a sum of a series of m-functions is
still a series of m-functions. For example,

(sλ + sµ)⊗ sν =
∑
ρ

χνρ z
−1
ρ

l(ρ)∏
i

( ∑
α

Kλαmρi ·α +
∑
β

Kµβmρi ·β

)
.

6. Illustrative example and concluding remarks

To illustrate the method presented in this paper, let us consider the plethysm in U(3)

(s(1) + s(2) + s(3))⊗ s(21) (59)

relevant to the physical problem of finding the U(3) representations that can describe three
particles placed with permutation symmetry (21) in any of the valence shells N = 1, 2, or 3
of the spherical harmonic oscillator.
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We shall outline first how the calculation is carried out using equation (44) (which
we refer to as method I), and then discuss the evaluation of the same plethysm by means
of the procedure advocated in this paper (method II) and implemented with Maple. Of
course the result via method I could also be obtained, in practice, by automatic computation,
but the evaluation steps of method II are, in our opinion, simpler and therefore easier to
program.

With method I, one applies equation (44) with, for example, A = s(1) + s(2) and B = s(3)
to obtain

(s(1) + s(2) + s(3))⊗ s(21) = [(s(1) + s(2))⊗ s(21)][s(3) ⊗ s(0)] + [(s(1) + s(2))⊗ s(0)][s(3) ⊗ s(21)]

+[(s(1) + s(2))⊗ s(2)][s(3) ⊗ s(1)] + [(s(1) + s(2))⊗ s(1)][s(3) ⊗ s(2)]
+[(s(1) + s(2))⊗ s(12)][s(3) ⊗ s(1)] + [(s(1) + s(2))⊗ s(1)][s(3) ⊗ s(12)]. (60)

Applying equation (44) to the first factor of each term in the preceding equation, one
is left with plethysms of ‘simple’ S-functions which can be evaluated using one’s favourite
algorithm. The result is sums and products of sums of S-functions. Repeated applications of
the Littlewood–Richardson rule then generates the result

(s(1) + s(2) + s(3))⊗ s(21) = s(81) + s(72) + s(63) + s(621) + s(54) + s(531) + s(432)

+s(8) + 2s(71) + 3s(62) + s(612) + 3s(53) + 2s(521) + s(42) + 2s(431) + s(422) + s(322)

+2s(7) + 4s(61) + 5s(52) + 2s(512) + 4s(43) + 3s(421) + 2s(321) + s(322)

+2s(6) + 5s(51) + 5s(42) + 2s(412) + 2s(32) + 3s(321)

+2s(5) + 4s(41) + 3s(32) + 2s(312) + s(221) + s(4) + 2s(31) + s(22) + s(212) + s(21).

Note that the above result is valid for U(n) in general, i.e. for n � 3, since no S-functions
in more than three parts appear in the expansion.

With method II we proceed as follows. First s(1) + s(2) + s(3) is expressed in terms of
m-functions and s(21) in terms of p-functions,

(s(1) + s(2) + s(3))⊗ s(21) = (m(1) +m(2) +m(12) +m(3) +m(21) +m(13))⊗ 1
3 (p(13) − p(3)).

(61)

Use of equation (47) yields

(s(1) + s(2) + s(3))⊗ s(21) = 1
3 (m(1) +m(2) +m(12) +m(3) +m(21) +m(13))

3

− 1
3 (m(3) +m(6) +m(32) +m(9) +m(63) +m(33)).

The next step is to evaluate the first term on the rhs of the above equation by applying
equation (31). At this point the desired number of indeterminates has to be specified. Since we
are interested in a U(3) result, we restrict the m-function labels to at most three parts. Finally
we collect like terms in the resulting m-function expansion and by means of equation (20)
convert them to S-functions9.

It is clear from this example that the algorithm presented here does not rely on recurrence
relations but rather follows very simple rules extremely convenient for automatic computation.
The rules of this algorithm are exactly the same whether one has to determine the plethysm of
simple or compound S-functions.

The Maple procedure implementing method II of plethysm is

> Splethysm:=proc(dim::nonnegint,S1::list(list),S2::list)
local SS2,SS1, SR;

9 Note here that, as mentioned before in this paper, having to construct the Kostka matrix in order to retrieve the
required inverse Kostka numbers is not as economical as using equation (20).
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SS1:=M_content(dim,S1);
SS2:=P_content(S2);
SR:=pleth(dim,SS1,SS2);RETURN(Schur_list(dim,SR));
end:

Thus, the command to evaluate the plethysm (s(1) + s(2) + s(3))⊗ s(21) and the corresponding
output are

> Splethysm(3,[[1],[2],[3]],[2,1]);

[ [8, 1, 0, 1], [7, 2, 0, 1], [6, 3, 0, 1], [6, 2, 1, 1], [5, 4, 0, 1],
[5, 3, 1, 1], [4, 3, 2, 1],
[8, 0, 0, 1], [7, 1, 0, 2], [6, 2, 0, 3], [6, 1, 1, 1], [5, 3, 0, 3],
[5, 2, 1, 2], [4, 4, 0, 1], [4, 3, 1, 2], [4, 2, 2, 1], [3, 3, 2, 1],
[7, 0, 0, 2], [6, 1, 0, 4], [5, 2, 0, 5], [5, 1, 1, 2], [4, 3, 0, 4],
[4, 2, 1, 3], [3, 3, 1, 2], [3, 2, 2, 1]
[6, 0, 0, 2], [5, 1, 0, 5], [4, 2, 0, 5], [4, 1, 1, 2], [3, 3, 0, 2],
[3, 2, 1, 3]
[5, 0, 0, 2], [4, 1, 0, 4], [3, 2, 0, 3], [3, 1, 1, 2], [2, 2, 1, 1],
[4, 0, 0, 1], [3, 1, 0, 2], [2, 2, 0, 1], [2, 1, 1, 1],
[2, 1, 0, 1] ]

Clearly, the entries in the call-command Splethysm(dim,S1,S2) are dim = 3, where dim is
the chosen number of indeterminates; Sl ≡ [[1],[2],[3]], a list of lists; each list-element
corresponds to an S-function on the lhs of the plethysm operation; S2 ≡ [2,1], a simple list
which stands for the S-function on the rhs of the plethysm operation.

Note that the entry-lists do not require the zero parts of the S-functions to be specified
but, in the output, the S-functions are labelled by lists with dim + 1 number of parts. The last
element of each list gives the multiplicity of the corresponding S-function.

The procedure Splethysm relies on other Maple procedures, namely M content, which
expresses the S-functions in terms ofm-functions, P content, which expresses an S-function
in terms ofp-functions, pleth, which evaluates the plethysm ofm-functions withp-functions,
evaluates the product of series of m-functions (whenever necessary) and collects like m-
functions together, and finally Schur list, which converts the m-functions back to S-
functions.

As with any algorithm for plethysm, run time increases rapidily with the dimensions of
the S-functions involved. With a 100 MHz Pentium the plethysm mentioned above takes 12 s.
An important point of this method is that one has the ability to establish, a priori, the affiliation
of the character sµ (in sµ ⊗ sν), i.e. whether it belongs to U(2) or U(3), etc, so that one can
specify the number of indeterminates and considerably simplify the calculations and reduce
running time. For example, with the same 100 MHz Pentium, the plethysm s(22) ⊗ s(8) takes
11 s for r = 2 (U(2)) indeterminates, 48.5 s for r = 3 (U(3)) and about 20 min for r = 4
(U(4)). Note though that the simplification introduced by establishing from the beginning the
maximum number of parts of the resulting S-functions does not result in any loss of accuracy.

In conclusion we have succeeded in giving a method that treats the plethysm of compound
S-functions (linear combinations or products of S-functions) on the same footing as the
plethysm of simple S-functions. There is no need, in this method, to resort to the use of
intricate equations in order to take care of the fact that S-function plethysm is not distributive
on the left with respect to addition, subtraction or multiplication. The key point of the method
is the fact that the plethysm of a monomial symmetric function by a power-sum symmetric
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function is still a monomial symmetric function, which does not hold true in general for S-
functions. Clearly, the product of twom-functions is a series ofm-functions; thus by reducing
the S-functions tom-functions the plethysm reduces to a simple multiplication ofm-functions,
which can be performed without regard for their S-function origin. The S-function content of
the plethysm is recovered at the end by converting the finalm-functions into S-functions, using
again a simple algorithm. The method requires only algorithms for expanding S-functions in
terms of m-functions and vice versa, and for evaluating products of series of m-functions.
These algorithms are given in sections 3 and 4 respectively. Use of this method is of great
advantage for evaluating plethysms of characters of groups other than the unitary groups or
plethysms of finite series of S-functions.

Maple procedures to carry out the calculations entailed by these algorithms have been
constructed and the whole package will appear shortly in the literature. The procedure to
evaluate the outer product of S-functions is also part of the package. Details will be left to the
forthcoming publication.
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Appendix A. The Kostka numbers and representation theory

The physical interpretation of Kostka numbers can be made clear in terms of representation
theory by means of the following claim.

Claim. If λ is a highest weight for some U(n) irrep then the S-function (character) for this
irrep is given by

sλ(x) =
+∑
ν

Kλν mν(x) (62)

where the sum
∑+ is restricted to dominant integral weights and Kλν is the mulitiplicity of

basis states of a weight ν in the irrep.

Note that a dominant integral weight is one having the property that ν1 � ν2 � · · · �
νn � 0. In the language of Lie algebra structure theory, such a weight belongs to the positive
Weyl chamber of weight space.

Proof. An S-function sλ(x) for a unitary groupU(n) evaluated at x = (x1, . . . , xn) is the trace
over a basis for the irrep of highest weight λ of the matrix T λ(x) representing the diagonal
U(n) matrix with diagonal entries (x1, . . . , xn). Under the transformation T λ(x), a state |ν〉
of weight ν = (ν1, ν2, . . .) and multiplicity indexed by α transforms as

T (x) : |α, ν〉 → |α, ν〉 × xν1
1 x

ν2
2 . . . . (63)

It follows that

sλ =
∑
α,ν

x
ν1
1 x

ν2
2 . . . (64)
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where the sum is over all weights of the irrep. Now observe that, if ν is a weight of a U(n)
irrep, the weight obtained by permuting all the parts of ν = (ν1, ν2, . . .), viewed as a partition
of |λ|, is also a weight for the irrep. The set of all weights obtained by permuting the parts of a
given weight lie on a Weyl orbit. Such an orbit is characterized by any one weight in the orbit.
Moreover, every orbit contains just one weight in the positive Weyl chamber. Next observe
that the contribution to the S-function coming from all the weights on a single Weyl orbit is
the sum of the distinct terms obtained by permutations P of the subscripts:

mν(x) =
∑
P

P xν1
1 x

ν2
2 . . . . (65)

It follows that the S-function for an irrep is the sum of such m-functions weighted by the
multiplicities Kλν . �

Appendix B. Multiplication of m-functions

The product of two simple m-functions is defined as

mαmβ =
∑
γ

Iγαβmγ (66)

where {γ } stands for the set of distinct (and ordered) partitions obtained by adding partition α
to the partitions derived from β by permuting its parts in all possible, but distinct, ways:

Iγαβ = nγ dim(mα)

dim(mγ )
. (67)

In the case where the product of monomial functions involves multiplicative coeficients, we
define

cαmα cβmβ =
∑
{γ }
ϒγαβmγ (68)

where

ϒγαβ = cαcβIγαβ = cαcβnγ dim(mα)

dim(mγ )
. (69)

The product of a sum of two monomial functions by another monomial function is

(cα1mα1 + cα2mα2)cβmβ =
∑
{γ1}
ϒγα1β

mγ1 +
∑
{γ2}
ϒγα2β

mγ2

=
∑
{γ }
ϒγαβmγ (70)

where the set of partitions {γ } is the union of the sets {γ1} and {γ2}.

ϒγαβ =


ϒγα1β

+ ϒγα2β
if γ ∈ {γ1}

⋂{γ2}
ϒγα1β

if γ ∈ {γ1}
ϒγα2β

if γ ∈ {γ2}.
(71)

The generalization to a sum of N terms is straightforward:( ∑
i

cαimαi

)
cβmβ =

∑
{γ }
ϒγαβmγ (72)

with

ϒγαβ =



∑
i

ϒγαiβ if γ ∈ ⋂{γi}
ϒγαiβ if γ ∈ {γi}.

(73)
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Now the product of two series of monomial functions is( ∑
i1

cαi1mαi1

)( ∑
i2

cαi2mαi2

)
=

∑
{γi1 ,i2 }

ϒγi1 ,i2mγi1 ,i2

=
∑
{γ12}
ϒγ12mγ12 (74)

where

ϒγ12 =



∑
i1,i2

ϒγi1 ,i2 if γ ∈ ⋂{γi1,i2}

ϒγi1 ,i2 if γ ∈ {γi1,i2}.
(75)

Or equivalently,

ϒγ12 =
∑
i1,i2

ϒγi1 ,i2 δγ12{γi1 ,i2 } (76)

where δγ {γi1 ,i2 } = 1 if the partition γ12 appears in the set {γi1,i2} and zero otherwise.
The product of three series of monomial functions can be obtained by making use of the

previous result( ∑
i1

ci1mαi1

)( ∑
i2

ci2mαi2

)( ∑
i3

ci3mαi3

)
=

( ∑
{γ12}
ϒγ12mγ(12)

) ∑
i3

ci3mαi3( ∑
{γ12}
ϒγ12mγ(12)

) ∑
i3

ci3mαi3 =
∑

{γ12,i3 }
ϒγ12,i3

mγ12,i3
=

∑
{γ123}

ϒγ123mγ123 (77)

with

ϒγ123 =
∑
i12i3

ϒγ12,i3
δγ123{γ12,i3 } (78)

ϒγ12,i3
= ϒγ12ci3nγ12,i3

dim(mγ12,i3
)

dim(mγ123)
(79)

ϒγi1 ,i2 = ci1ci2nγi1 ,i2
dim(mαi1 )

dim(mγ12)
. (80)

Finally the product of p series of monomial functions can be written as( ∑
i1

ci1mαi1

)( ∑
i2

ci2mαi2

)
· · ·

( ∑
ip

cipmαip

)
=

∑
{γ12...p}

ϒγ12...p mγ12...p (81)

where the coefficients

ϒγ12...p =
∑

i12...p−1,ip

ϒγ12...p−1,ip
δγ12...p{γ12...p−1,ip } (82)

can be found recursively.
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